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A computat ional  procedure based on the Backwards Implicit Method  is shown to be a powerful  and 
general method of  solving problems of  mass t ransport  to a wall-jet  electrode. Conventional  numerical 
methods based on a Cartesian grid are unsatisfactory because the electrode is very non-uniformly 
accessible. An expanding grid which increases in size in proport ion to the diffusion layer thickness 
across the electrode surface, is shown to be effective in computing the limiting current-f low rate 
behaviour of  (a) a simple electron-transfer reaction, (b) ECE, and (c) DISP1 processes. 

1. Introduction 

The wall-jet electrode (WJE) is a well-characterised 
and increasingly popular hydrodynamic electrode in 
which the flow is due to a fluid jet which strikes a 
planar electrode surface at right-angles and spreads 
out radially over that surface; the fluid outside the jet 
being at rest [1]. This pattern of flow is sketched 
schematically in Fig. 1. The WJE has been enthusi- 
astically adopted by electroanalytical chemists partly 
because as a flow cell it is well suited to continuous 
monitoring analysis. In particular it has been developed 
for use with such techniques as anodic stripping 
voltammetry [2~4], flow-injection analysis [5-7] and 
HPLC detection [8, 9]; in all of which its sensitivity, 
well-defined hydrodynamics, robust shape and ease of 
practical use have been considered advantageous [10]. 
A double WJE has been described [11, 12] and again 
used hitherto exclusively for analytical work [13]. 

We are unaware of any applications of the wall-jet 
in the study of electrode reaction mechanisms although 
the fact that it is very-nonmniformly accessible (see 
below) might lead one to anticipate that it might 
be particularly powerful in terms of mechanistic 
discrimination [14, 15]. Part of this neglect arises from 
the absence of any generally applicable theory of 
mass transport to such electrodes; in particular for 
electrode processes involving coupled homogeneous 
kinetics. Previous treatments - restricted to simple, 
kinetically uncomplicated electron-transfer reactions 
- have relied on analytical methods of solving the 
appropriate convective-diffusion equations [11, 16] 
and this approach may not be readily applicable to 
more complex and interesting electrode processes. 
Accordingly we present, in this paper, a general 
computational strategy for solving mass-transport 
problems at WJEs. The method is shown first to give 
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results in good agreement with the existing analytical 
solutions for simple electron-transfer and is then 
extended to the cases of the ECE and the DISP1 
reaction mechanisms. Before presenting the new 
theory we briefly review the hydrodynamics of the 
wall-jet arrangement. 

2. The hydrodynamics of  the W J E  

The theory of fluid motion for the WJE under laminar 
flow conditions was derived by Glauert [1]. Using 
the coordinates defined in Fig. 1, the velocity of the 
solution is described by two components: v~ for the 
radial velocity, and vz for the velocity in the direction 
normal to the electrode surface. It is convenient to 
define a dimensionless parameter t/, where q describes 
distance normal to the 'wall' and is given by 

t 1 = (135M/32v3rS)l14z (1) 

where v is the kinematic viscosity and M = 
k 4 V3/2rc3a 2 in which Vf is the volume flow rate 
(cm 3 s-~), k c is a constant determined by experiment 
(see below) and a is the diameter of the jet. vr is given 
by 

% = (15M/2vr3)l/zf'(q) (2) 

and vz by 
v, = (3/4) (40Mv/3rS)~/'h(tl) (3) 

The functions f'(r/) and h(r/) are shown in Fig. 2 and 
may be generated from the following functions: 

f'(r/) = (2g/3) (l - g3) (4) 

fit/) = g~ (5) 

= l n [ ( l  + g + g~) ' /2 / ( l  - g)]  

+ 3 ~/2 arctan [3~/2g/(2 + g)] (6) 

h(r/) = (5/3)qf'(r/) - fit/) (7) 

575 
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[Impinging jet 

r =  0 r - - - ~  

Fig. 1. The flow pattern at the wall-jet electrode. 

by varying g from 0 to 1 so that 1/varies from 0 to 
infinity. From Fig. 2 it can be seen that both v~ and v~ 
decrease as r increases, vr is zero at the wall, passes 
through a maximum at t/ = 2.03 and then declines 
back to zero, whereas v~, again zero at the wall, 
reaches a maximum value at r/ = 2.31 and drops back 
to zero at t/ = 3.96. For  all these values of t/, the flow 
is away from the wall. For  values oft / larger than 3.96, 
h(q) is negative, reaching a limiting value of --1 far 
from the wall. Flow in this region is thus towards the 
wall. That is, there exists a boundary at t 1 = 3.96 
dividing flow towards the electrode from that moving 
away. This boundary and schematic streamlines are 
shown in Fig. 1. It can be seen from this figure that the 
WJE is a highly non-uniformly-accessible electrode - 
that rates of mass transport are much greater in the 
centre of the electrode than at the edges. This is shown 
quantitatively by the fact that the diffusion layer 
thickness, 6d, at a WJE is proportional to r ~/4 [11] (see 
below). 

3. Simple electron transfer at a W J E  

The form of the convective-diffusion equation relevant 
to the WJE geometry, under steady-state conditions is 

3c 0c 0% 
V r ~r  + v z -~z = D O z--- s (8) 

where c is the concentration of  the species of  interest, 
D its diffusion coefficient and vr and vz have been 
defined above. In writing Equation 8 we have neglected 
radial diffusion, which has been shown to be a good 
approximation for practical electrodes [11]. To solve 
the above equation we need to specify appropriate 
boundary conditions. For the case of a simple electron- 
transfer reaction 

A + e , B (I) 

under transport-limited conditions these take the form 

(a) z = 0, [A] = 0 

(b) z , oo, [A] , [A]0 

where [A]0 represents the concentration of A in bulk 
solution. 

In order to solve Equation 8 we approximate the 
derivatives to their finite-difference equivalents. The 
r - z  plane is thus divided up into a two-dimensional 
grid as shown in Fig. 3. Increments in the r direction 
are Ar and in the z direction Az. We use the subscripts 
k and j to denote distances on the radial and normal 
directions 

where 
length 

The 

~Z j,k+l 

(radial distance)k = k A r ,  

k = 0, 1 , . . . , K  whereAr  = R / K  (9) 

(normal distance)j = j A z ,  

j =  0, 1 . . . .  , J  whereAz = Z / J  (10) 

R is the radius of the electrode and Z is the 
of the grid in the z direction. 
derivatives in Equation 8 become 

_ gi,k+J - gj.k (1 l) 
Ar 

= gj+1.k+l - gj,k+l (12) 
AZ 

632g gj+l,k+l -- 2gj,k+l + gj-l,k+l (13) 
~Z2 = (AZ) 2 

where g is the normalised concentration of A, i.e. 
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Fig. 2. The velocity profiles for the radial velocity, f'(r/), and the 
normal velociiy, h(t/), as a function of the dimensionless coordinate, 
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Fig. 3. The finite-difference grid. 
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g = [A]/[A]0. The boundary conditions are 

j = 0, g0,k = 0 1 < k < K (14) 

k = 0, gj.0 = 1 1 < j  < J (15) 

J = J, gs.~ = 1 0 < k < K (16) 

The above approach combined with the Backwards 
Implicit Method has been successfully applied to a 
great diversity of  problems in the field of channel 
electrodes [17-24]. However the WJE displays a much 
greater non-uniformity of accessibility than the 
channel electrode [25]. Thus if a simple Cartesian grid 
were adopted, as in Fig. 3, unsatisfactory results 
would be likely. This is because, as can be seen from 
Fig. 1, the diffusion layer thickness varies as r 5/4. Thus 
if an appropriate value of  Ar is chosen so that a 
sufficient number of grid points is used at small values 
of r to cover the diffusion layer thickness and thus 
ensure convergence, the total number of  grid points 
used in the calculation will be prohibitively large since 
the same value of  Ar will apply at the outside of  the 
electrode where the diffusion layer is very much 
thicker. Moreover such a calculation would be 
extremely inefficient as, for small r, the vast majority 
of the grid points would lie outside of the diffusion 
layer and thus be inconsequential to the computation 
because gj. k would be unity for these points. 

To overcome these difficulties we develop an ex- 
panding grid approach where the size of Z increases 
with k. For  every value of r (=  kAr)  we restrict the 
grid to within a selected range of r / f rom 0 to r/*, so 
that all the concentration changes occur within this 
region. As will be discussed below, a value of  0.4 for 
t/* is found to be optimal. The corresponding value of 
Z is given by 

Z = tl*[135M/(32v3(kAr)5)] -~/4 (17) 

A schematic diagram of the expanding grid is shown 
in Fig. 4. We use the notation zk to denote the line 
normal to the electrode surface, between z = 0 and 
z = Zk, in this figure. 

In the Backwards Implicit Method [17] the normal- 
ised concentrations of A along Zk+l are calculated 
from those along z~. In order to do this, a Cartesian 

I' 
z 

Z :  Zk~.l . . . . . . . . . . . .  

Z ~ . Z  k . . . . . . . . . .  

Z = ~Tk. 1 . . . . . . . . .  

k=O R-1 k k+l k= K 
/--.__~ 

Fig. 4. A schematic representation of the expanding grid. 
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Fig. 5. The interpolation of the concentration at the point (j, k'). 

grid is required [17]. To obtain this, we use the spacing 
as set along zk+l (i.e. Z e + I / J )  and find the concen- 
tration of  A at corresponding points along zk by inter- 
polation as can be understood by reference to Fig. 5. 
Consider the concentrations at the points ( j  - I, k), 
(• k) and (j, k + 1) which are known and from which 
the concentration at the point (j, k + 1) is to be 
calculated. In order to do this we need to know (see 
below) the concentration at the point (j, k') (which 
represents an interpolated point in the Cartesian space 
as defined by J 'boxes' along the line zk+~). 

If we consider tt~e ratio of the length of  adjacent 
grid lines 

{Zk+llZk} -~- {(k -[- 1)/]s 5/4 (18) 

we see that for small k, the grid is expanding very 
rapidly (for example z2 > 2zl). Thus for smalt k, 
Fig. 5 is incorrect in the sense that the point (j, k) does 
not necessarily lie between (j, k + 1) and ( j  + 1, 
k + 1). We therefore estimate (j, k') by the following 
means 

(a) For  j such that 

{ j /J}z#+l  > zk then, gj.k' = 1 (19) 
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Fig. 6. Diagram illustrating the parameter ]. 



578 R . G .  C O M P T O N ,  C. R. G R E A V E S  A N D  A. M. W A L L E R  

(b) For lower j, it is necessary to identify j and 
( j  + 1) (as shown in Fig. 6) such that 

{(J-+- 1)/J}Zk > {j/a)Zk+i > {]/J}Zk (20) 

SO that Lagrangian two-point interpolation may be 
used to find the concentration at (j, k') 

gj, k' = gy,k -+- {gy+l,k - -  gy, k} ( J /Zk )19  (21) 

where p is a weighting factor 

p = (j/J)zk+, -- (y/J)ze (22) 

The finite-difference representation of the derivatives 
in the convective-diffusion equations of interest in 
terms of the expanding grid notation is as in Equations 
1 1 - 1 3  except that &.k is replaced by gj, k, in Equation 11. 

The implementation of the expanding grid theory 
requires us to specify % and % in a computationally 
compatible form. Firstly we choose to 'centre' the 
velocity terms on the point (j, k + 1): 

Vr(r  , Z) = v , ( ( k  + 1)ar, jAz)  (23) 

v~(r, z) = v~((k + 1)Ar, jAz)  (24) 

Secondly, since concentration changes are restricted to 
small values of*/, we can use the following approximate 
equations in place of the full Equations, Equations 
2 and 3, [11] 

%,~o = (2/9) (15M/2vr3)tl  (25) 

%,,-0 = (7/36) (40Mv/3rS)~ 2 (26) 

Substitution of the relevant equations into Equation 8 
gives 

{gj,k+l -- &.k'} + 2j.k+~{gj+,.k+, -- &,k+l} 

= ~j,k+,{g:+,,e+, - 2&e+, + g:_,,k+,} (27) 

where 

%(j ,  k + 1)Ar 
2j, k+~ = %(j ,  k + 1)Az (28) 

DAr 
ej,k+~ = %(j ,  k + 1) (Az) 2 (29) 

Rearrangement of Equation 27 gives us the general 
equation for the Backwards Implicit calculation: 

&.k, = -ej.~+~ &-,.k+l + {2ej.k+, - ~j,k--1 AV 1} gj,k 

- {ej,k+l - 2j.k+,} &+,.k+, (30) 

Application of the boundary conditions to Equation 
30 gives 

(a) at the electrode surface, g0,k = 0, so 

gl,k' = {2el,k+l -- )q,k+l + 1} gl,k 

- -  {gl,k+l - -  )~,,k+l} g2,k+l (31)  

(b) at the edge of the diffusion layer, gJ.k = 1, so 

g J - l , k '  = - - g d - l , k + l  g J - 2 , k + l  

+ {2ga-j.k+l - )CS-l,k+1 + 1} g j  I.k 

- -  { g J - l , k  1 - -  /~J- l ,k+l}  (32) 

These ( J -  1)x  ( J -  1) simultaneous equations 
may be expressed as a ( J -  1) x ( J -  1) matrix 
equation: 

{d} = [T]{u) (33) 

i ,e .  

dl 

4 

4 

ds_2 

.d,_~J 

where 

g = gj.k, 

a 2 b2. c 2 0 ~/2 

= o a~ bj. "q 0 uj 

%'~176 

a j - 2  b d - 2  C j - 2  U j - 2  

0 a j  i bd i 1AJ-I 

j = 1, 2 . . . . .  (J - 2) 

(34) 

d ,  1 = g.,-~,k. + {~,-~.k+~ - ,~-, .k+~) (35) 

uj = gj,k+l j = 1 , 2 , . . . , ( J - -  1) 

(36) 

aj = --ej,k+~ j = 2, 3 . . . . .  (J -- 1) 

(37) 

bj = (2~j,k+ 1 --  ~,j,k+, + 1 ) j  = 1, 2 . . . . .  ( J -  1) 

(38) 

c: = - (e j .k+ ,  - ~.j,~+,) j = 1, 2 , . . . ,  ( J  - 2) 

(39) 

The matrix [T] is of tridiagonal form and this allows 
the use of the Thomas Algorithm [17, 26] to calculate 
{u}k from {d}k. The boundary condition &,0 = 1 
( j  = 1, 2 . . . . .  J )  supplies the vector {d}0 from 
which {u}0 is calculated. However {d}k+l is readily 
determined from {u}k (Equations 34-36) so that {u}, 
may then be calculated from {d}1, {u}2 from {d}2, and 
so on until {U}x is obtained. In this way all the values 
gj.k(J = 1 , 2 , . . . , ( J -  1),k = 1 . . . .  , K )  canbe  
evaluated. Notice that this is achieved without the 
need to specify a value for g0,0- This feature makes the 
Backwards Implicit Method particularly appropriate 
for wall-jet problems - the fact that the diffusion 
layer is infinitesimally thin at r = 0 enables us to use 
&0 = 1 (J = 1, 2 , . . . ,  J )  as an initial boundary 
condition from which concentrations 'downstream' of 
r = 0 may be calculated. 

The expression for the transport-limited current, / ,  
at the electrode takes the form: 

I = ; 2 ~ r D F ~ r r , z = o d r  (40) 

where F is Faraday's constant. This is computed from 
the following equation 

K 
I = Y" 2rckDF[A]o g~,k (Ar)2 (41) 

k=l 
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4. The ECE mechanism 

In this section the Expanding Grid Backwards Implicit 
Method is extended to include the coupled kinetics of  
the ECE mechanism. The mechanism is defined by the 
following kinetic scheme 

E A + e -  ~B 

C B < ,  C (II) 

E C + e -  , P  

The associated steady-state transport equations are 

~a da c~2a 
V'~rr + % ~ z  = D c~z---- 3- (42) 

~b Ob O2b 
+ v,_~z = D-~z ~ - k ,b  (43) 7) r ~ -  7 

~3c ~c D ~ c  
Vr ~Tr + vz ~-z = ~Tz 2 + k~ b (43) 

where we have made the approximation that A, B and 
C have the same diffusion coefficient, D. We further 
assume that only A is present in bulk solution and 
normalise the concentrations of  the three species 
relative to [A]0: gA = [A]/[A]0, g B =  [B]/[A]0 and 
gC = [C]/[A]o. The boundary conditions correspond- 
ing to transport-limited conditions are 

(a) r = 0 :ga  = 1, gB = gC = 0 (45) 

(b) z = 0:g~ = 0, OgB/Oz 

= _,9gC/&, gC = 0 

(c) z , o o ( ~ = , * ) : g a =  1, 

(46) 

gB = g C =  0 

(47) 

Applying the method used for the simple electron- 
transfer case we obtained three matrix equations, one 
for each of i = A, B and C such that: 

{d}' = [Tl'{u} ~ (48) 

We next work out the matrix elements for B and C; 
those of A are unchanged from the previous case. By 
substituting the relevant finite-difference equations 
into Equation 43 we obtain the following general 
Backwards Implicit equation for B 

~," = -~j,k+~g~-,.,+, + {24,,~+, - 4,k+, + 1 

+ Kj.k+,} g~k+, -- {e,.k+, -- 2,~k+,} g~+,.k+, 

(49) 

where 2j.e+~ and gk+~ are as defined above and K is 
given by 

k~ Ar 
Kj.~+, - %(j,  k +  1) (50) 

Applying the boundary conditions (b) and (c) above 
we find that 

B B 
g~s+, - g0,~+i - ~ + l  (51) 

and gff, k = 0. Applying these constraints to Equation 

49, we can then identify the required matrix elements 
for B 

a j  ~ - -  ~'j,k + l 

j = 2, 3 . . . .  , (a - 2) 

(52) 

(53) 

j =  1 , 2 , . . . , ( J - l )  

(54) 

j =  2 , 3 , . . . , ( J -  1) 

(55) 

bj = (2ej,k+, - 2j.k+, + 1 + Kj.k+~) 

j =  2 , 3 , . . . , ( J -  1) 

(56) 

b~ = (gi.e+J - 21.k+~ + 1 + Kl,k+l) (57) 

cj = -(~j,~+, - ;>+~)  j = ~, 2 , . . . ,  ( J  - 2) 

(58) 

Repeating the above procedure, we obtain the general 
Backwards Implicit equation for C 

gCe. + Kj,,+,g~.e+, = --gLk+lgc_l.k+l q- {2ej.e+, 

-- 2j.a+, + 1} gCe+ , -- {g,.~+, -- 2,.e+,} g~+,,k+l 
(59) 

Applying again the boundary conditions (b) and (c) 
we obtain c c go.k+J = 0 and g~.k = 0 and can thus 
deduce the sought matrix elements 

4 = g5, .- + 

a j  ~ - - C , j , k +  I 

j =  1 ,2  . . . .  , ( j - l )  

(60) 

j =  1 , 2 , . . . , ( J -  l) 

(61) 

j = 2 , 3  . . . . .  ( J -  1) 

(62) 

bj = (2ej.k+~ - ~J.k+l "1- 1) j = 1, 2 , . . . ,  ( J -  1) 

(63) 

cj =--(ejlk+, = 2i;k§ . j = 1, 2 , . . .  , (J  - 2) 

(64) 

It can be seen that the matrix elements for B depend 
on g~j,k+~ and the matrix elements of  C on &Bk+t, SO that 
the matrix equations for each k value must be solved 
in the order A then B then C before proceeding to the 
next value of k (i.e. k + 1). 

The current is the sum of that due to the reduction 
of both A and C 

K g~Ck + 
I = ~ 2rckDF[A]o (Ar) 2 (65) 

k= I A Z  

5. The DISP1 mechanism 

In this section the theory for the DISP1 reaction is 
established. The reaction mechanism is defined by the 
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following scheme 

E A + e -  ) B  

C B < , C  

D I S P  B + C , A + P ( f a s t )  

( I I I )  

The  appropr ia te  s teady-state t ranspor t  equat ions are 

aa  aa  02a 
%-~r + v:-~z = D ~z2 + k~b (66) 

Ob ~b O2b 
V r ~ r  + % Oz - D-&yz2 - 2k~b (67) 

and the bounda ry  condit ions for t ransport - l imited 
condit ions 

(a) r = 0 : g a  = 1, gB = 0 (68) 

(b) z = 0: gA = 0, OgB/OZ = --Oga/dZ (69) 

(C) Z , oO (t/ = t/*):gA = 1, gB = 0 (70) 

Again we have {d}' = [T]'{u}' where i = A and B, 
and  we need to work  out  the corresponding matr ix  
elements. 

The general Backwards  Implici t  equat ion for  A is 
given by 

~ '  q- Kj.k+lgg,k+l = --gj.k+lg~j-t.k+l q- {2gj.k+l 

(71) 

Applying  the bounda ry  condit ions g~0.k+l = 0 and 
~ k + l  = 1 we obtain  the following matr ix  elements 

4 = g~j,k, + Kj, k+lg~,k+~ j = 1, 2 , . . . ,  ( J  -- 2) 

(72) 
d , _ l  = + 

-[- (ej  l,k+l - -  2 J - l , k + l )  (73) 

blj = g~,j,k+ 1 j =  1 , 2 , . . . , ( J - -  1) 

(74) 

aj = -a;,k+l j = 2, 3 . . . .  , ( J  - 1) 

(75) 

b, = (2~j,k+ ' - l~j.k+ 1 ~- 1 ) j  = 1, 2 , . . . ,  ( J -  1) 

(76) 

ca = --(gj, k+, -- 2#.k+l) j = 1, 2 , . . . ,  ( J  -- 2) 

(77) 

In the case of  B we have the general equat ion 

g~,k' = -- gj, k + I gi]- l,k + l Jr- {2gLk+l-  Jy,k+l 

+ 2Kj, k+l + 1} g~,k+, 

- -  ('~j,k-}-I - -  4],k--l} gB+l,k--1 (78) 

The bounda ry  condi t ion in Equa t ion  51 again applies 
along with B gs, k+l = 0 and so the matr ix  elements are 

4 = g~,~' j = 2 , 3 , . . .  , ( J -  2) 

(79) 

dl B a (80) : g l , k '  -}- 131 ,k+lg l , k+ l  

u] = g~,k+, j =  1 ,2  . . . .  , ( J - -  1) 

(8]) 

a t = -a j ,  k+, j = 2, 3 . . . .  , ( J  - 1) 

(82) 

bj = (2aj,k+, - 2],k+, + ] + 2Kj,k+l) 

j =  2 , 3 , . . . , ( J - -  1) 

(83) 

bl = (el,k+, -- 2,.k+, + 1 + 2Kl,~+l) (84) 

cj = --(ej.k+l -- 2j.k+l) j = 1 , 2 , . . . , ( J - -  2) 

(85) 

As can be seen f rom Equat ions  72, 73 and 80, the 
matr ix  elements for  A depend on g~.k+l and those for 
B depend on g~j,k+~ �9 Thus  in order  to facilitate solution 
of  the equat ions we employ  an iterative method.  
Specifically, an initial value ofg~, k, for g~a+l is assumed 
in order  to permit  the calculation of  a value for  g~j,k+ ~. 
This value is then used to calculate a 'bet ter '  value of  
g~,k+ 1, and the process repeated until there is no signifi- 
cant change in either ~k+l or g~k+~ on further iter- 
ation. The final values are then used to start  the iterative 
calculation on the next line 'downst ream' ,  i.e. zk+:. The 
current  for the DISP1 case is given by Equat ion 41. 

6. Results and discussion 

6.1. Simple electron-transfer 

We consider first the results obtained for the case of  
simple electron-transfer computed  as described above. 
The convergence was examined by varying J and K. A 
value of  J = 200 and K = 5 000 was sufficient to give 
convergence to three significant figures in the computed  
current. These values were used to obtain the data  
discussed below. Fig. 7 shows a plot indicating how 
convergence is achieved by increasing K at the fixed 
value J = 200. 
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i i i J i 

I?o 2:0 3.0 ~:o 
log K 

Fig. 7. The convergence of the transport-limited current for a 
simple electron transfer with log K, where K is the number of grid 
points on the radial direction. J was fixed at 200 in these cal- 
culations. 
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Fig. 8. The computed variation of In (1) with In (D) for a simple electron-transfer (J = 200, K = 5000, Vf = 10 -3 cm3s t). The line drawn 
has a slope of 2/3. 

An  analytical tbeory for the transport-limited current 
has been derived by Albery [1 I] f rom Equat ion  8, 
together with the approximat ions  for Vr and v~ given in 
Equat ions 28 and 29 

I = 1.59kcFD2/3v -sly2 Vf3/4a-l/2/~3/4[A]o (86) 

in which it is assumed that  the electrode reaction is a 
one-electron process. Albery 's  theory contains no dif- 

ferent assumptions from the computa t iona l  theory 
presented above and so the results obtained f rom our  
computa t ions  should be in good  agreement  with 
Equat ion  86. Plots o f  In (I)  with ln(D),  ln(R) and 
In (Vf) are shown in Figs 8-10 over the ranges 
D = 2 x 10 -6 to 6 x 10-6cm2s-J ,  R = 0.1 to 
0 .5cm,  and Vr = 10 -3 to 10-~cm3s -~. These plots 
were generated using the following parameters:  
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Fig. 9. The computed variation of In (I) 
with in (R) for a simple electron-transfer 
(J = 200, K = 5000, V e = I0-1cm3s-l). 
The line drawn has a slope of 3/4. 
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Fig. 10. The computed variation of In (I) with In (Vff) for a simple electron-transfer (J -- 200, K = 5 000). The line drawn has a slope of 
3/4. 

kr = 0.9, v = 0.0089cm2s ~ (H20), d = 3.2 x 
10-6cmZs -I,  R = 0.4025cm and a = 0.0345cm. It 
can be seen that the graphs have slopes of 0.67, 0.75 
and 0.75 respectively, in excellent agreement with the 
analytical theory. 

Different values of r/* were examined and the value 
of 0.4 found to be optimal. This was sufficiently large 
so that the concentration changes (of A) near to 
the electrode surface were confined to values of t/ 
appreciably smaller than 0.4 so as to validate the 
boundary condition g~s.~ = 1. At the same time, 
t/* = 0.4 is small enough to permit the use of the 
approximate equations for % and v~, Equations 28 
and 29. 

The excellent agreement with analytical theory 

evident from Figs 8-10, together with the fact that the 
computations gave absolute values for the transport- 
limited current to within 1% of those predicted by 
Equation 86, over the ranges of D, R and Vf cited 
above, gives confidence in the general computational 
approach developed above. We thus encourage the 
general use of the Expanding Grid Backwards Implicit 
Method, in particular for those wall-jet problems 
where analytical theories are not available. 

6.2. ECE and DISP1 processes 

W e  c o n s i d e r  n e x t  t h e  r e su l t s  o b t a i n e d  f o r  t h e  E C E  a n d  

D I S P 1  p rocesses .  I n  b o t h  cases  t h e  r e su l t s  a r e  m o s t  

c o n v e n i e n t l y  d i s p l a y e d  in  t e r m s  o f  t he  effect ive  
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Fig. I I. The variation of N,~ with log (Vr) 
for the ECE ( ) and DISPI (-- --) mech- 
anisms for (a) k 1 = 1.0s, (b) k I = 0.1 and 
(c) k~ = 0,01 s -~ . The other parameters 
used in the computation are cited in the 
text. 
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Fig. 12. A computed curve for the ECE mechansim showing how 
N~f r depends on the rate constant kl for the electrode of  the geometry 
cited in the text, and a flow rate, Vf = 10-2cm3s -j  . 

number of electrons transferred, Neff, that is the ratio 
of  the computed current to that calculated under 
identical conditions but with kl = 0. Calculations 
were performed using the same set of  parameters as 
for the simple electron-transfer case above. In the case 
of  the ECE reaction, convergence to three significant 
figures was readily achieved with  J = 200 and 
K = 5000 for values of  Vr between 5 x 10 .5 and 
1.0 cm 3 s ~ and values of  k~ between 10 -4  and 30.0 s-~. 

Typical results are shown in Fig. 11 and it can be seen 
that there is, as expected, a smooth transition between 
Neff = 2 at low flow rates, and Ne~ = 1 at fast flow 
rates. This reflects the competit ion between the loss of  
the intermediate B either f rom mass transport  away 
from the electrode (high Vf) or through further 
reaction at the electrode (low V0. Equivalently, 
Fig. 12 shows how Neff depends on k~ at a fixed flow 
rate for a WJE with the parameters defined above. 

Satisfactory convergence in the DISP1 case was 
harder to achieve: J = 500 and K = 6 000 only gave 
results to three significant figures for k~ < 5.0 s -~ and 
for Vf > 10-2cm3s-~ The results are shown in 
Fig. 11. The difference in the ease of  convergence as 
compared to the ECE case can be attributed to the 
need to have g~.k" as an accurate first approximation to 
g~k+~ when beginning the iteration to find gjAk+ ~ and 
g~k+~. This dictates a finer grid than is necessary for 
the ECE calculation. Nevertheless, as can be seen 
from Fig. 11, satisfactory 'working curves' can be 
calculated covering almost the full range of  the exper- 
imental variables. 

6.3. Mechanistic resolution 

Finally, it is interesting to compare the curves shown 
in Fig. 11 for the ECE and the DISP1 mechanism. It  
can be seen that there is a slight separation between 
the two working curves for a given rate constant and 
that, in principle, limiting current-flow rate data 
might allow the discrimination between these two 
closely related reaction mechanisms. However, for the 
electrode geometry used to generate Fig. 11, this 
would probably requ'~re experimental accuracies 
greater than those norxlally employed. Similarly 
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Fig. 13. A comparison of  the theoretical curves of  N~fr against diffusion-layer thickness for an ECE process at (a) the channel electrode (-- --), 
and (b) the WJE ( - - ) .  
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pessimistic conclusions have been reached about  the 
resolution of the ECE/DISP1 problem using steady- 
state rotating-disc electrode vol tammetry [27, 28]. 
However, a more general and correct basis for a 
comparison between two different electrode types is to 
see how Ne~ varies with the mean diffusion layer thick- 
ness, 5 a, of the electrode, rather than how it varies 
with Vf for some arbitrary electrode geometry 

AFD[A]o 
6~ - ( 8 7 )  

I 

In this equation I i s  given by the appropriate transport- 
limited current equation for each electrode type and A 
is the area of  the electrode. 

6.4. Comparison with channel electrode 

Fig. 13 shows a comparison between the wall-jet ECE 
response and that of a channel electrode (Fig. 14) 
under 'Levich conditions' [14, 15]. The latter has a 
diffusion layer thickness which increases as the cube 
root of  the distance along its length. It  is thus inter- 
mediate in behaviour between the uniformly accessible 
rotating-disc electrode and the wall-jet electrode 
(where 6d varies as rS/4). It can be seen that the non- 
uniformity of  the WJE leads to a more gradual 
transit ioninNo~betweentheextremelimitsofNofr = 1 
and Ne~ = 2 than is the case for the channel electrode. 
This may be understood as follows. It  was explained 
above that N+fr refects the competition between loss of  
intermediate (B) through transport  into solution or 
through further heterogeneous charge-transfer at the 
electrode surface. At the upstream edge of a channel 
electrode, or at the centre of  a WJE, the diffusion layer 
is very thin and this means that the concentration 
gradients here are very steep. This promotes the loss 
of  intermediates from the electrode surface whereas 
further downstream, intermediates are more likely to 
undergo further electrode reaction as the diffusion 
layer is thicker and the concentration gradients are 
shallower, thus trapping intermediates. This will result 
in a gradual transition, in both types of  electrode, 
from the transfer of  one to two electrons as the flow 
rate is decreased. However, since the wall-jet is less 
uniformly accessible than the channel it is expected 
that this transition will be more gradual in that case. 

Fig. 13 implies that the WJE is, in principle, intrin- 
sically more sensitive than the channel electrode 
(which is itself superior to the rotating-disc electrode 
[15]) and is thus more likely to be able to resolve 

2h ..... A i~ ...... -~ 0 

, , , / . . ." 
) r  s ~ / ~ �9 . . . . .  

0 xe 

Ftow- 
Fig. 14. A schematic drawing of a channel electrode. The electrode 
(shaded), of length x+ and width w, is embedded in the wall of a 
rectangular duct (cross-section 2hd). 
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Fig. 15. 'Working curves' of N~ against flow rate for the ECE 
process generated using typical dimensions (see text) for a channel 
electrode ( ) and a WJE (----). 

closely similar types of  electrode reaction mechanism. 
However, we have seen from Fig. 11 that for a typical 
practical wall-jet geometry (R = 0.4cm), it is 
unlikely that the ECE and DISP1 processes could 
be resolved. Only with rather smaller electrode 
dimensions (R < 0.1 cm) would the resolution become 
feasible. In contrast we note that the ECE/DISP1 
discrimination has been accomplished by Neff-flow 
rate measurements at channel electrodes of  convenient 
dimensions (2h = 0.04cm, w = 0.4cm, d = 0.6cm, 
Xe = 0.4cm; see Fig. 14) [14, 15]. The reason for this 
can be seen from Fig. 15 which shows, for an ECE 
process, how Neff varies with flow rate for the WJE 
used in the calculations above and for the channel 
electrode cited. The latter is found to give a much 
gradual transition between the two limits and represents 
the superior of  the two electrodes. 

Clearly for maximum sensitivity WJEs need to be 
built as small as possible. However, a practical 
limitation on this is the requirement that the jet act as 
a point source in comparison with the electrode [1]. 
Thus the electrode always has to be appreciably 
larger in size than the jet, otherwise the hydro- 
dynamics of  the system are changed and the electrode 
becomes much more uniformly accessible [11]. No 
such restriction exists for channel electrodes which 
may thus prove to be more powerful than WJEs in the 
study of electrode reactions involving coupled homo- 
geneous kinetics. 
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